Beyond Good Practice: Why HIPAA only addresses part of the data security problem

Jeff Collmann, Ph.D. ISIS Center, Georgetown University Medical Center

Beyond Good Practice

- HIPAA: the difficulties of good practice
- Software vulnerabilities in biomedical devices
- Organizing network operations and security

Health Insurance Portability and Accountability Act of 1996

- Prevent loss of health insurance upon change in jobs
- Administrative Simplification Regulations
 - Transaction and Code Set Standards
 - Privacy of all individual health information
 - Security of electronic individual health information
 - Identifiers

- No data security standards in 1996
- HHS sought industry advice, including NIST, DoD, textbooks, commercial practice, emerging guidelines
- Health care industry behind commercial practice
- Final Security Rule: February 2003
- Compliance date: April 21, 2005

- Developing administrative judgment: What but not how
 - 22 Standards
 - 40 Implementation specifications
 - Required and Addressable
- Three types of rules
 - Administrative
 - Physical
 - Technical

Standard: Security Management Process

Text: "Implement policies and procedures to prevent, detect, contain, and correct security violations."

- Implementation Specifications: Required
 - Risk Analysis
 - Risk Management
 - Sanction Policy
 - Information System Activity Review

• Standard: Transmission Security

Text: "Implement technical security mechanisms to guard against unauthorized access to protected health information that is being transmitted over an electronic communications network."

- Implementation Specifications: Addressable
 - Integrity Controls
 - Encryption

- HIPAA's heart: managing data security risks
 - Adapt to scale of operations
 - Assess and learn to manage new threats and vulnerabilities to breaches of confidentiality, integrity and availability using good practice

- Risk Management
 - Ongoing cycle of assessing, implementing, monitoring, and revising

Assesses technical and organizational threats

- IT specialists conduct technical vulnerability scans
- Multidisciplinary team should conduct comprehensive risk assessments
- Requires new types of work among new constellations of people

 OCTAVEsm: self-directed information security risk assessment process

 Comprehensive approach
 Multidisciplinary team

SM - Operationally Critical Threat, Asset, and Vulnerability Evaluation and OCTAVE are service marks of Carnegie Mellon University.

$\mathsf{OCTAVE}^{\scriptscriptstyle\mathsf{SM}} \operatorname{Process}$

- An interdisciplinary team
 - Clinical staff
 - Health information managers
 - Information technology staff

OCTAVEsm

- Integrates mission with information assets, business process and security risk management
- Builds consensus from diverse perspectives on information management
- But, entails costs
 - Much time and effort across the enterprise
 - Productivity losses of staff from primary duties
 - Staff resistance
- Fails if relegated to IT only

Beyond Good Practice

- Software vulnerabilities in Computerized Biomedical Devices
- Approaches to organizing network operations and security

- Medical devices subject to FDA regulation
 - 510K review for safety and efficacy
 - Software "patches" require testing and revalidation
 - Only vendors can perform repairs, testing and revalidation
 - Physicians worry about patient safety
 - Medical devices with unpatched software pose threat to entire network

- Medical devices subject to FDA regulation
 - Vendors not include this type of repair and testing in standard maintenance agreement
 - Negotiations among vendors and customer representatives (VHA, DoD, HIMSS) just begun
 - Vulnerabilities proliferating

- Does this pose a major problem for networked systems?
- Air Force TCNO alerts that affected medical devices: 15 April 2002 to 14 April 2003

Type of Operating System	Average Alerts per month
UNIX	.83
Windows	3.08
Total	3.91

- "Revolving Threat" for Air Force Medical Service
 - Waiver can extend time for individual device
 - Before existing patches installed and tested, new vulnerabilities emerge
 - Number and time required for patches creates chronic problem for large networks with tens or hundreds of medical devices
 - Thus, performing the good practice of applying patches cannot alone secure such medical networks
- Requires contractual and architectural solutions

- "Good practice" does not address the architecture of network operation and security management
- "One Air Force, One Network" program redirects network management from decentralized to centralized approach

Existing decentralized network management architecture

- Each Air Force facility develops its own approach to network management and security, including military treatment facilities
- Great complexity, cost, and autonomy
 - Great diversity in hardware, software and local architecture
 - No central visibility of expense or bulk discounts
 Little central oversight of activities or effectiveness
- Maximum flexibility to respond to local conditions

"One Air Force, One Network" centralized three-tiered management

- Air Force Communications Agency develops common approach to network management and security, including military treatment facilities
- Less complexity, cost, and autonomy
 - Common approach to hardware and software producing unified deployment and bulk discounts
 - Centralized budgeting
 - Centralized management based at headquarters of 13 Air Force Major Commands
- Minimum flexibility: Functional adaptations require negotiation with central command (eg HIPAA or biomedical devices)

Conclusions

- Implementing good information security practice in health care organizations requires new types of work among new constellations of people
- Networked, computerized medical devices pose chronic security vulnerabilities to their host networks
- Managing network operations and security requires balancing flexibility with central control